歡迎您來到安科瑞電氣股份有限公司網(wǎng)站!
【摘要】以內(nèi)蒙古某一實(shí)際分布式風(fēng)電-電池儲能系統(tǒng)的設(shè)計(jì)和運(yùn)行效果為基礎(chǔ),對影響其可用性的關(guān)鍵因素進(jìn)行了分析。結(jié)果顯示:能量管理系統(tǒng)的設(shè)計(jì)需要考慮功率補(bǔ)償控制以抵消儲能系統(tǒng)內(nèi)部功率損耗;功率轉(zhuǎn)換系統(tǒng))的響應(yīng)時間對系統(tǒng)性能具有*要影響,控制算法的功率指令周期需與PCS響應(yīng)時間匹配;儲能系統(tǒng)的結(jié)構(gòu)和布局也對儲能系統(tǒng)的環(huán)境適應(yīng)性有著*要影響。風(fēng)電-電池儲能系統(tǒng)可用性對其實(shí)際推廣應(yīng)用具有*要影響,該文對影響風(fēng)電-電池儲能系統(tǒng)應(yīng)用過程中出現(xiàn)的問題提出了相應(yīng)的解決方法,為風(fēng)儲系統(tǒng)的推廣與應(yīng)用提供參考。
【關(guān)鍵詞】風(fēng)儲系統(tǒng):能量管理系統(tǒng):功率轉(zhuǎn)換系統(tǒng)(PCS)響應(yīng)時間;溫度控制設(shè)計(jì)
0.引言
風(fēng)能作為一種清潔的可再生能源,越來越受到世界各國的*視。但風(fēng)能隨機(jī)波動的特點(diǎn),造成風(fēng)電出力的頻繁波動,使電網(wǎng)的調(diào)頻、調(diào)峰壓力加大,成為長期困擾風(fēng)電并網(wǎng)的主要難題。
我國的棄風(fēng)限電*次出現(xiàn)于2010年,此后棄風(fēng)從零星現(xiàn)象快速擴(kuò)散,2012年的情況*為嚴(yán)*,棄風(fēng)率達(dá)17%。之后隨著出臺一系列政策鼓勵風(fēng)電并網(wǎng)消納,我國棄風(fēng)率2013年上半年降至13.5%,2014年上半年進(jìn)一步降至8.5%。2015年7月,能源局發(fā)布數(shù)據(jù)顯示,上半年全國平均棄風(fēng)率為15.2%,風(fēng)電棄電量達(dá)175億kW·h,同比增加101億kw·h,造成經(jīng)濟(jì)損失接近87億元,創(chuàng)3年來同期新高。2015年上半年棄風(fēng)限電主要集中在蒙西(棄風(fēng)率20%)、甘肅(棄風(fēng)率31%)和新疆(棄風(fēng)率28.82%)。
將電池儲能系統(tǒng)與風(fēng)電結(jié)合,可以平滑機(jī)組輸出、提高風(fēng)電輸出與預(yù)測的置信度、提高風(fēng)電可調(diào)度性及實(shí)現(xiàn)峰值轉(zhuǎn)移,有效改善風(fēng)電對電網(wǎng)的影響國內(nèi)外對電池儲能技術(shù)在風(fēng)電上的應(yīng)用均十分關(guān)注。
國內(nèi),2011年電網(wǎng)在張北投運(yùn)的20MW電池儲能站(一期)主要定位于配合風(fēng)電和光伏接人。2013年在國電龍?jiān)磁P牛石風(fēng)電場投運(yùn)的5MW/10(MW·h)全釩液流電池儲能設(shè)計(jì)實(shí)現(xiàn)配合風(fēng)電接人的功能。國外儲能技術(shù)與風(fēng)電的配合應(yīng)用更早。2005年日本住友電工開發(fā)的4MW/6(MW·h)全釩液流儲能電池系統(tǒng)安裝在北海道的30MW風(fēng)電場示范運(yùn)行。2008年日本風(fēng)電開發(fā)公司在Rokksasho5lMw風(fēng)電場安裝了34MW/1169.6(MW·h)的鈉硫電池以平抑風(fēng)電場輸出功率。挪威石油公司自2009年開始測試鋰電池配合離岸風(fēng)電,2015年公布將于2018年在蘇格蘭彼得岬外海,為15臺6MW漂浮式離岸風(fēng)電場安裝15MW/15(MW·h)的鋰電池儲能系統(tǒng)。2016年美國圣地亞哥電力公司實(shí)施2MW/8(MW·h)全釩液流電池儲能項(xiàng)目,以響應(yīng)加利福尼亞州提出的2020年要導(dǎo)人高達(dá)33%可再生能源的目標(biāo)。
儲能技術(shù)與風(fēng)電的配合方式有集中式和分布式2種,上述儲能電站均屬于集中式儲能,集中采取溫度控制措施、方便管理和維護(hù)。但集中式儲能占地大,需要規(guī)劃集中的建設(shè)場地,其建設(shè)涉及征地和審批方面的工作。
分布式儲能則可以在風(fēng)機(jī)旁就地布置,聯(lián)會協(xié)調(diào)控制,具有控制靈活的優(yōu)點(diǎn),同時在一定程度上克服了集中儲能需要征地和審批的不足。目前相關(guān)的研究和示范工作多針對集中式儲能展開,對分布式儲能的應(yīng)用及其應(yīng)用中的問題則鮮見論述。本文針對分布式儲能工程應(yīng)用中對可用性影響的因素進(jìn)行分析探討,供相關(guān)應(yīng)用設(shè)計(jì)參考。
1.分布式風(fēng)電-電池儲能系統(tǒng)
分布式風(fēng)電-電池儲能系統(tǒng)是1臺風(fēng)機(jī)配置1套儲能系統(tǒng),或者幾臺風(fēng)機(jī)配置1套儲能系統(tǒng),單套儲能系統(tǒng)容量相對要求較小,從物理位置上講屬于分布式儲能。
分布式風(fēng)電-電池儲能系統(tǒng)以單臺或幾臺風(fēng)機(jī)為直接控制對象,以風(fēng)電場整體優(yōu)化為目標(biāo),其配置安裝和控制方式較為靈活,通過多系統(tǒng)間的協(xié)調(diào)控制可以*大程度降低風(fēng)電場內(nèi)部線損,在單臺風(fēng)機(jī)或單臺儲能系統(tǒng)發(fā)生故障時可以進(jìn)行協(xié)調(diào)邏輯的重組,以繼續(xù)實(shí)現(xiàn)*優(yōu)運(yùn)行,但其協(xié)調(diào)控制較為復(fù)雜,整體協(xié)調(diào)控制要求高。由于每臺儲能系統(tǒng)均需獨(dú)立的測量和控制系統(tǒng),單位容量成本較高。
從原理上講,1機(jī)1儲配置的電氣連接既可采用交流側(cè)并聯(lián),也可采用直流側(cè)并聯(lián)。交流側(cè)并聯(lián)時,風(fēng)機(jī)與儲能系統(tǒng)之間的控制系統(tǒng)相互解耦,實(shí)現(xiàn)方便,也是目前技術(shù)上較為成熟的方式。1機(jī)1儲的分布式儲能系統(tǒng)的安裝既可以采用集裝箱形式在風(fēng)機(jī)旁就近安置,也可以將儲能系統(tǒng)置于風(fēng)機(jī)塔筒內(nèi)部。其中前者更具有模塊化思路,工程實(shí)施方便;后者需要風(fēng)機(jī)廠商與儲能廠商的配會,目前尚未見實(shí)用。
在內(nèi)蒙古某49.5MW風(fēng)電場選取1臺風(fēng)機(jī)實(shí)施的分布式1機(jī)1儲項(xiàng)目即采用交流690V側(cè)并聯(lián),單臺風(fēng)機(jī)容量為1.5MW,儲能集裝箱在風(fēng)機(jī)旁就近安裝,容量為500kWx2h。項(xiàng)目于2015年5月成功投運(yùn)。在實(shí)施過程中曾遇到因控制策略對實(shí)際系統(tǒng)功率損耗考慮不足導(dǎo)致電池荷電狀態(tài)(stateofchargeS0C)不斷降低以致于*終無法運(yùn)行,控制周期設(shè)計(jì)不合理反致整個系統(tǒng)功率波動增加,溫度控制(簡稱溫控)系統(tǒng)氣流路徑設(shè)計(jì)不合理造成電池溫差過大等問題,這些控制和設(shè)計(jì)因素直接影響到風(fēng)儲系統(tǒng)的可用性,值得相關(guān)技術(shù)人員加以關(guān)注。
2.風(fēng)儲能量管理系統(tǒng)控制策略對可用性的影響
能量管理系統(tǒng)(energymanagementsystem,EMS)實(shí)時采集電網(wǎng)信息并從電池管理系統(tǒng)(battenmanagementsystem,BMs)獲取電池信息以實(shí)現(xiàn)風(fēng)儲系統(tǒng)的頂層控制功能??刂撇呗园?個控制策略和電池保護(hù)部分,即削峰填谷、計(jì)劃跟蹤、平滑功率、調(diào)壓、調(diào)頻和電池保護(hù)。圖1為風(fēng)儲EMS就地挖制結(jié)構(gòu)框圖。無論風(fēng)儲EMS的控制目標(biāo)如何,其通過指令直接調(diào)節(jié)的僅是功率轉(zhuǎn)換系統(tǒng)的有功功率和無功功率,直接改變的是風(fēng)電機(jī)組低壓側(cè)的有功、無功功率和頻率。
在EMS就地控制系統(tǒng)中,將匯流點(diǎn)三相電壓、電流進(jìn)行P/Q分解,得到風(fēng)電機(jī)組和儲能系統(tǒng)整體輸出的有功和無功功率,其中測量計(jì)算得到的有功功率作為功率平滑,削峰填谷,計(jì)劃跟蹤控制的主要依據(jù),無功功率作為無功補(bǔ)償(電壓調(diào)整)的主要依據(jù)。將三相電壓信號進(jìn)行頻率提取,作為緊急調(diào)頻情況下有功功率輸出控制的主要依據(jù)。其控制策略框圖如圖2所示。
上述控制策略原理簡單,但根據(jù)理想情況設(shè)計(jì)的控制策略在實(shí)際應(yīng)用中卻無法正常運(yùn)行。在各種理想的控制策略中,設(shè)計(jì)目標(biāo)是使得交流側(cè)并網(wǎng)點(diǎn)的充放電能量保持平衡,即能量積分為0。而儲能系統(tǒng)充放電運(yùn)行過程中,電池、BMS.PCS.EMS,溫控系統(tǒng)和消防系統(tǒng)等均有能量損耗,上述能量損耗均發(fā)生在并網(wǎng)點(diǎn)以下(直流側(cè)或者PCS上),能量的損耗體現(xiàn)為內(nèi)耗。僅考慮理想條件的控制策略無法使得能量的損失從電網(wǎng)得到補(bǔ)充,結(jié)果導(dǎo)致隨著運(yùn)行時間的增加,電池SOC不斷下降。SOC下降速度與電池充放電效率和PS效率直接相關(guān)。
項(xiàng)目實(shí)施中發(fā)現(xiàn),如控制策略不考慮儲能系統(tǒng)的功率損耗,運(yùn)行24h后2臺儲能集裝箱內(nèi)的電池SOC均下降了20%左右。
為確保風(fēng)電-電池儲能系統(tǒng)能夠長期可靠地運(yùn)行,同時考慮到SOC估算誤差通常較大的實(shí)際情況中,本文采取輔助措施將SOC的運(yùn)行范圍限制在一個以50%為的較窄區(qū)間內(nèi)以避免電池SOC上下越限。采取的措施如下詳述。
(1) 在理想控制策略輸出指令的基礎(chǔ)上選擇件地附加功率偏置。由于電池充放電和PCS運(yùn)行的能量損耗對電池SOC大小的影響是單方向的(使得SOC減小),因此當(dāng)電池SOC在50%以上時,直接將理想控制策略的輸出指令作為控制PCS的指令。此時利用電池和PCS本身的功率損耗使得儲能系統(tǒng)SOC向著50%運(yùn)行。當(dāng)電池SOC低于50時,在理想控制策略輸出指令的基礎(chǔ)上附加使電池SOC向上的充電功率偏置,此功率偏置應(yīng)大于電池和PCS的損耗,以保證SOC向著50%運(yùn)行。
(2) 對偏置功率大小設(shè)置限值。為保證附加的偏置功率不會對原控制策略指令產(chǎn)生嚴(yán)重影響,對偏置功率設(shè)置了上限值。
3.功率轉(zhuǎn)換系統(tǒng)響應(yīng)速度對可用性的影響
PCS接受來自EMS的功率指令并執(zhí)行,儲能系統(tǒng)的功率輸人輸出均通過PCS進(jìn)行。EMS系統(tǒng)的控制速度由采樣速度、EMS控制算法速度和PCS的指令響應(yīng)速度共同決定。在實(shí)際工程中,PCS的指令響應(yīng)速度低于前兩者,對風(fēng)儲系統(tǒng)控制策略的運(yùn)行效果有著至關(guān)重要的影響。
PCS指令響應(yīng)時間由EMS與PCS之間的通訊延遲時間、PCS功率控制環(huán)執(zhí)行時間構(gòu)成。后者通常為幾到幾十ms,EMS與PCS之間的通訊延遲時間遠(yuǎn)遠(yuǎn)大于后者。
為掌握PCS的響應(yīng)情況,本文對PCS進(jìn)行了功率指令跟蹤測試。測試中以通信指令的形式按照正弦變化規(guī)律給定有功功率,正弦變化周期為15,3060,90和120s。指令功率的正弦變化周期為30s時,指令功率和測得的PCS實(shí)際輸出功率的曲線如圖3所示。
由圖3可知,PCS對EMS的功率指令的響應(yīng)存在明顯的滯后,滯后時間約為1s左右,且存在一定的抖動。上述滯后導(dǎo)致風(fēng)儲系統(tǒng)對快速的功率波動無法有效平抑,嚴(yán)重時甚至?xí)?dǎo)致風(fēng)儲系統(tǒng)總功率波動的增加。在內(nèi)蒙古某風(fēng)電場風(fēng)儲系統(tǒng)調(diào)試階段實(shí)測得到的風(fēng)機(jī)功率波動情況即是如此。實(shí)測得到的風(fēng)機(jī)功率波形和風(fēng)-儲總功率波動如圖4所示。
圖4中,功率方向以風(fēng)-儲吸收電能為正,以風(fēng)-儲向外放出電能為負(fù),故圖中顯示風(fēng)機(jī)輸出功率為負(fù)值。圖4對應(yīng)的測試中,平滑功率控制算法按照濾波時間常數(shù)為10min計(jì)算出對PCS的功率指令百接發(fā)送給PCS,電壓、電流等信號的采樣速率為0kbit/s,時間窗口長度為900s。圖中對比可見運(yùn)行平滑功率策略后功率波動更加嚴(yán)重。
為解決上述不但無法平抑風(fēng)功率波動反而造成總波動增加的問題,在后續(xù)調(diào)試過程中,將功率平控制算法的控制周期增加到約PCS響應(yīng)時間的2倍,約2s,即控制算法的功率指令每間隔2s給PCS發(fā)送1次,得到功率平滑效果如圖5所示。
由圖5可知,風(fēng)機(jī)功率波動峰值為900kw,平滑后的功率波動峰值降為425kw,消除波動達(dá)52.8%,平抑效果較為明顯??刂扑惴ㄖ芷跒?s時對應(yīng)控制環(huán)路帶寬為0.5Hz。根據(jù)香農(nóng)定理,可以分析并濾除的功率信號的頻率不高于0.2H。實(shí)際工程中可以起到功率平滑效果的頻率要低于該理想情況下的頻率,本文實(shí)測顯示,對于0.1Hz的功率波動具有平抑的效果,對于0.1以上的高頻功率波動則無法消除。
儲能系統(tǒng)應(yīng)用中經(jīng)常提到緊急調(diào)頻和緊急調(diào)壓功能,值得注意的是上述2種功能的實(shí)現(xiàn)需要儲能系統(tǒng)對電網(wǎng)電壓和頻率的變化具有ms級的響應(yīng)速度。以本文PCS的響應(yīng)速度,顯然無法實(shí)現(xiàn)緊急調(diào)頻和緊急調(diào)壓功能。根據(jù)本文調(diào)研,大多數(shù)商業(yè)化儲能PCS的響應(yīng)速度都無法滿足上述功能的要求,這值得儲能系統(tǒng)應(yīng)用相關(guān)人員加以關(guān)注。
4.儲能集裝箱結(jié)構(gòu)和布局對可用性的影響
對于集中式儲能而言,儲能系統(tǒng)位于建筑物內(nèi)空間相對寬松,溫度控制由建筑物的暖通系統(tǒng)實(shí)現(xiàn)。本文1機(jī)1儲的風(fēng)電-電池儲能系統(tǒng)采用集裝箱式設(shè)計(jì),儲能系統(tǒng)的結(jié)構(gòu)和布局設(shè)計(jì)不僅影響儲能集裝箱的強(qiáng)度、系統(tǒng)的運(yùn)輸和維護(hù),也與儲能系統(tǒng)的溫度管理密切相關(guān)。
圖6所示為儲能集裝箱俯視圖。儲能電池,FCS和EMS布置于儲能集裝箱內(nèi)。儲能電池4組并聯(lián),全部布置于集裝箱右側(cè)(以進(jìn)門為正方向),左側(cè)空間保留為走道,供巡祝和維修使用。由于儲能電池是儲能系統(tǒng)中體積*大、質(zhì)量*重的部件,本文中采取的不對稱布局使儲能系統(tǒng)*心偏右、偏高,對儲能系統(tǒng)的運(yùn)輸安全不利,偏右使得安裝時左右地基受力不均,提高了對地基強(qiáng)度的要求。
內(nèi)蒙古夏季溫度早晚溫差大,白天*高溫度可達(dá)30℃,但時間短,冬季氣溫可低至零下40℃。為針對性地改善儲能集裝箱的溫控效果,該風(fēng)電場溫度控制采取了夏季空冷,冬季加熱的方式,同時對集裝箱內(nèi)部的散熱氣流路徑和加熱氣流路徑進(jìn)行了不同的設(shè)計(jì)。
夏天散熱模式時,集裝箱側(cè)壁上方的帶風(fēng)嘲可開閉出風(fēng)口開啟,同時電池底部帶風(fēng)扇可開閉擋風(fēng)板關(guān)閉,強(qiáng)迫外部空氣向上通過儲能電池的間隙,起到強(qiáng)制散熱的作用,氣流路徑如圖7所示。
冬季加熱模式時,電池下方的帶風(fēng)扇可開閉擋風(fēng)板開啟,右下側(cè)進(jìn)風(fēng)口和左上側(cè)的帶風(fēng)扇可開閉出風(fēng)口關(guān)閉,強(qiáng)迫熱風(fēng)進(jìn)行順時針循環(huán),起到強(qiáng)制均勻加熱的效果,氣流路徑如圖8所示。
除此以外,針對我國北方風(fēng)沙大的特點(diǎn),對儲能集裝箱進(jìn)風(fēng)口采取了多層濾網(wǎng)的防風(fēng)沙設(shè)計(jì)。經(jīng)過在內(nèi)蒙古某風(fēng)電場實(shí)際運(yùn)行,經(jīng)歷了當(dāng)?shù)叵奶旖?0℃的氣溫,秋天的風(fēng)沙和冬天零下30℃的嚴(yán)寒電池溫度維持在15-35℃,電池問溫差不大于5℃。用,保證了電池儲能系統(tǒng)對環(huán)境溫度和條件的適應(yīng)能力,同時集裝箱式設(shè)計(jì)地簡化了現(xiàn)場施工,利于設(shè)備的維護(hù)。
5.Acrel-2000ES儲能柜能量管理系統(tǒng)
5.1系統(tǒng)概述
安科瑞儲能能量管理系統(tǒng)Acrel-2000ES,專門針對工商業(yè)儲能柜、儲能集裝箱研發(fā)的一款儲能EMS,具有完善的儲能監(jiān)控與管理功能,涵蓋了儲能系統(tǒng)設(shè)備(PCS、BMS、電表、消防、空調(diào)等)的詳細(xì)信息,實(shí)現(xiàn)了數(shù)據(jù)采集、數(shù)據(jù)處理、數(shù)據(jù)存儲、數(shù)據(jù)查詢與分析、可視化監(jiān)控、報警管理、統(tǒng)計(jì)報表等功能。在高級應(yīng)用上支持能量調(diào)度,具備計(jì)劃曲線、削峰填谷、需量控制、防逆流等控制功能。
5.2系統(tǒng)結(jié)構(gòu)
Acrel-2000ES,可通過直采或者通過通訊管理或串口服務(wù)器將儲能柜或者儲能集裝箱內(nèi)部的設(shè)備接入系統(tǒng)。系統(tǒng)結(jié)構(gòu)如下:
5.3系統(tǒng)功能
5.3.1實(shí)時監(jiān)測
系統(tǒng)人機(jī)界面友好,能夠顯示儲能柜的運(yùn)行狀態(tài),實(shí)時監(jiān)測PCS、BMS以及環(huán)境參數(shù)信息,如電參量、溫度、濕度等。實(shí)時顯示有關(guān)故障、告警、收益等信息。
5.3.2設(shè)備監(jiān)控
系統(tǒng)能夠?qū)崟r監(jiān)測PCS、BMS、電表、空調(diào)、消防、除濕機(jī)等設(shè)備的運(yùn)行狀態(tài)及運(yùn)行模式。
PCS監(jiān)控:滿足儲能變流器的參數(shù)與限值設(shè)置;運(yùn)行模式設(shè)置;實(shí)現(xiàn)儲能變流器交直流側(cè)電壓、電流、功率及充放電量參數(shù)的采集與展示;實(shí)現(xiàn)PCS通訊狀態(tài)、啟停狀態(tài)、開關(guān)狀態(tài)、異常告警等狀態(tài)監(jiān)測。
空調(diào)監(jiān)控:滿足環(huán)境溫度的監(jiān)測,可根據(jù)設(shè)置的閾值進(jìn)行空調(diào)溫度的聯(lián)動調(diào)節(jié),并實(shí)時監(jiān)測空調(diào)的運(yùn)行狀態(tài)及溫濕度數(shù)據(jù),以曲線形式進(jìn)行展示。